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Summary. A weak generalization of the mixed linear model and the use
of Moore-Penrose inverses lead to a simple and more compact structure
of the best inhomogeneous linear unbiased estimator (BILUE) of a linear
estimable parameter vector. That is similar to the well-known structure
of the linear Bayes estimator within a Bayesian model. A restricted
minimax optimality is proved. The resulting simple presentation of the
optimal risk opens the door to an approach to optimal experimental
design in mixed models.
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1. INTRODUCTION

Let us consider an ordinary linear model. Further, we assume that additional infor-
mation on a part of the unknown regression parameters is available, which restrict the
variability region of these components. If we express this knowledge in our model by
a probability distribution on the parameter space (prior distribution), then we obtain a
so-called mixed model. It contains the ordinary as well as the Bayesian linear model as
limiting cases. However, also the often considered models with (deterministic) restrictions
on the parameter space (e.g. Gaffke and Heiligers (1988)) are included using a correspon-
ding prior distribution. Therefore, the mixed models including all limiting cases are one of
the most applicated models for analysis and prediction of cause-response relations in the
natural, technical, and social sciences.

Originally, mixed models were considered only in connection of variance analytical

investigations, especially for the estimation of variance components. Already 25 years ago,

* The paper was written during the author’s stay at the University of Augsburg (FRG),
Institute of Mathematics, under a contract with the Deutsche Forschungsgemeinschaft.
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Henderson (1963) directed his interest also to the estimation of the (not directly observable)
realizations of the random effects and constructed corresponding estimators.

These investigations were continued later, e.g. by Harville (1978, 1979) and Bunke
(1977). All these authors used in their model representation a splitted design matrix con-
cerning the fixed and the random part in the parameter vector. This block representation
of the design led to relatively complicated estimators and to a risk function, which was
closed for any approach to optimal experimental design.

We want to try to attack this problem by a simple trick.

2. THE MIXED MODEL

Let A be an arbitrary (r X s)-matrix. Then we denote by R(A) the range of A. ‘The
starting point of our consideration is the following assumption:

Y=XB+e, 1

where
X is a known (n X k) design matrix, not necessary of full rank,

€ is a n-dimensional random vector with
E(e|B) = 0, D(e|g) =2 >0,

independent of a special # € R* with known positive definite (p.d.) (n x n) matrix
(E and D denote the expectation and the covariance matrix respectively), and

B is a k-dimensional vector which is orthogonally splitted by a known projector
P1 (P2 = Ik —Pl)
(Ix identity matrix of order k) into

B=p1+B with 1= PBp, B2 = P23,

where $, is fixed but unknown and f; is random with a distribution independent of 3,
with
EB, = b, DB, =T >0 positive semidefinite (p.s.d.)

where b and T are known parameters (prior parameters).
Without loss of generality we can assume that

beR(P,) and R(T)=R(P).
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With the special choice of

\0 ... . . .. 0)
model (1) includes the mixed models considered in the literature. With P; = 0 we obtain
the usual linear and with P, = I; the Bayesian model, which is formally equivalent to the
random coefficient regression model. In the following we use the denotation

L := R(P,). The joint distribution of (8,¢) depends on the parameters 52,5, T, and a

parameter x, which determines uniquely that distribution. We denote it by P22, where
n(d,k), 9=(b,T,2) and pf; €L.

The parameter 7 varies within a set II, which contains all parameters # fulfilling our
assumption (1), the existence of the first and second moments of P?? included. Then the

parameter space II has the form
I=0xK, 9€0, rkek.

Actually II also depends on the projector P;. It is assumed, however, that P; has to be
choosen from structural or other considerations before the parameter identification , what
should be possible in general. Within the usual mixed model frame the determination of
P, for instance, might be the decision, on which components of 8 additional information
is available or which components are assumed to be fixed.

Our goal is to estimate (or to predict) a realization of a linear parameter v = Cf after

the observation of Y, where C is a known (r x k) matrix of rank r.

3. LINEAR ESTIMABILITY AND OPTIMALITY

The power of an estimator § is measured by a quadratic risk function

R (7,8) = EP*|ly — 6(V)II}

2
= tr HMP2(6) @)
or by the matrix risk corresponding to the Lowner semiordering
T
M (8) = EE[y=6(Y)] [v-6(Y)] , (3)
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where H > 0 denotes a given p.s.d. weighting matrix of order r and E#2 is the expectation

corresponding to P2, Let further
D={§:(R",B") — (R",B")}
be the set of all possible estimators (B"-o-algebra of Borel sets), and
Dy={6€D:6y)=a+Ly, a€ R", y€ R", L € Myxn}

be the set of inhomogeneous linear estimators (M,xx denotes the set of all real valued
(r x k) matrices).

Definition 1. For a given 7 € II the estimator é € D is called to be unbiased, if

6§eDr={6€D:EF*(y-6(Y))=0 forall B eL}. 0

Definition 2. The parameter v = Cf is called to be linear estimable in 7 € II, if

D:?rlu :=D;y ND] # 0. O

Remark 1. 7 is linear estimable, iff an L € M,x, exists such that
Py(C-LX)" =0. (4)

Obviously
Ef(CB—-a—-LY)=0 forall B el

is equivalent to

(C—LX)b+(C—LX)3,=a forall B, €L,

and this holds for fixed b only, if
(C-LX)B; =0 for all B, € L,

what is the same as (4). 0



With Remark 1, the concept of linear estimability depends on 7 only by the pa-
rameter b. From (4) we obtain for the ordinary linear model (P, = 0) the well-known
estimability condition C = LX.

With P, = I} (Bayesian model), Condition (4) is not restrictive. Any linear parame-
ter -y is estimable. The missing information from observations is in the estimation replaced
by the corresponding prior information.

From Remark 1 we further obtain that for any inhomogeneous linear unbiased esti-
mator § = a + LY, it necessarily holds

a=(C—LX)b (5)

and

(C—LX)3, =0 forall B, €L.

Therefore, the set D], can be written as

Ditu ={6€D:6=(C—-LX)b+ Ly, L € M,xn and P,(C - LX)T =0}, (6)

which only depends on the known b, the reason, why it can be omitted.

Definition 3. The estimator §; € D is called to be better than é; € D for a given 7 € 11
(i) in the sense of (2), if
RP2(7,6,) < RP2(m,6,) for all B, € L, and
RP2(m,61) # RP?(x,8;) for at least one (3, € L,
(i) in the sense of (3), if
MPB2(85) — MP2(6,) > 0 (p.s.d.) for all B; € £, and
MPB2(6;) # MPB2(6;) for at least one 3, € L. 0

Remark 2. The following known relation consists between the both risks: If there exists
an optimal estimator corresponding to (2), which is independent of the special choice of
H > 0, then it is optimal too in the sense of (3) and vice versa. d

In the following we use the risk (2). For a given 7 € II, in general, there does not exist
an optimal estimator within the “big” class D. Therefore, one considers the restricted
classes D] or even D;q,,.

Definition 4. 6™ € DT is called to be a best unbiased estimator (BUE) for 7, if
infsepx RP2(m,6) = RP*(x,6™) forall B; € L. 0
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For § € D;su, the risks (2) and (3) are independent of k € K and 2 € L. In that case

we use the denotation

R(9,6) := RP(, ).

Definition 5. 6y € Djgy is called to be a best inhomogeneous linear unbiased estimator

(BILUE) for 7, if
infgep‘.“ R(ﬂ, 6) = 'R(ﬂ, 6,9)

4. THE OPTIMAL ESTIMATOR

Let now 4 be a linear estimable parameter, i.e.
R(P,CT) CR(P,XT),
then the following matrix properties are true:
Lemma 1. Under the assumptions (1) and (7) it holds
R(CT) S R(T* + Q),

where Q := X TQ~1X and T* denotes the Moore-Penrose inverse of T

Proof. We split up the range R(C ") orthogonally into the direct sum
R(CT)=R(P,CT)® R(P,CT).
Because of R(T1) = R(T), R(Q) = R(XT), Tt >0, and Q > 0, we obtain

RITT+ Q) =R(T:X)=R(T:P,X")
=R(P)®R(PXT),

using R(P;) = R(T) from (1). With R(P;CT) C R(P;) and (7) it follows (8).

" Lemma 2. Under the assumptions of Lemma 1, the matrix identity holds:
CT*+Q)*'Tt=C-C(T*+Q)*Q.
Proof. The identity (9) is equivalent to
C(T*+QHTT+Q) =C,
which is, however, a consequence of Lemma 1.

6

0

()

(8)
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With the following theorem we obtain a BILUE for 4, which is independent of H > 0

and k € K. There we use certain cylinder sets
Oy={rell:n=(9,x), k€K}, J€O, (10)
which devide the parameter space II into equivalence classes.

Theorem 1. Let 9 = (b,T,Q) € © be given. Under the assumptions (1) and (7) the
estimator

5.,9 =a*+L*Y (11)

with
a* = (C — L*X)b,

L*=C(T*+@Q)*xTq™?
is BILUE for «~ for any m € IIy with a risk
R, 69) =tr HC(TT + Q)*CT. (12)
Proof. First of all we see that 6y € DI, = € Ily. For all 7 € Il we have

Ef(y—6s)=Ch = C(T* + Q)" QB
=C(T*+ Q)" T* B (13)
=0 for all B, € L,

using Lemma 2 and LLR(T?) from (1). If we show that for any § = a + LY € Dj¢y the

mixed terms in the risk are vanishing, i.e.
tr HEP2(y — 64)(65 — 6)T = tr HEP*(65 — 8)(7v — 65)T =0

for all B, € £ and m € IIy, then the first part of the theorem is proved. Then we have

namely

R(9,8) = R(9,65) + EZ*||65 — 8|1
2 R(’!9, 517)
Using (13) and E; := f; — b we obtain

y—6s=(C—L*X)B - L" (14)
and from 6 € Djy, (compare (6)) it follows
89— 6= (L* — L)(X By +¢).
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Therefore, using (9) it holds independently of 8, € £
EP(y— 80)(69 — )T = C(T* + Q¥ T*TX(L* = I)T — O(T* + Q)* XT(L* - L)T
=C(Tt+Q)*(T*'T-I)X"(L*-L)"7
=0,
because the matrix (Ix —T*T) is a projector onto £ and with 89, 6§ € Djy, it holds with (6)
PRXT(L*-L)" =0.

Thus, the first part of our theorem is proved.
Considering (9) and (14), we obtain for the risk
R(9,69) = E?||(C — L*X)B, — L*¢|I};
=tr H[(C - L*X)T(C - L*X)T 4 L*QL*T]
=tr HC(T* + Q)*CT
for all 7 € Iy independently of B, € L. O

From Remark 2 it follows that éy is also BILUE w.r.t. the matrix risk (3} with
MP2(89) = My(69) = C(T+ +Q)*CT,

which has a more clear and simple structure than the usual presentations in the literature
(e.g. Bunke (1977)). The structure of this optimal matrix risk is closely connected to the
so-called Bayesian information matrix (e.g. Pilz (1983)). It might be the starting point for

the development of optimal experimental designs in mixed models.

Remark 3. Using Lemma 2 we obtain for éy from (11) the form of representation
89 = C(T* + Q)N (T* b+ QP), (15)

where
F=QtxTa™y,

which is just the Aitken estimator for # in the case of regular X. Quite similar to the
Bayesian linear model (cf. Hartigan (1969), Lindley and Smith (1972), Bunke and Gladitz
(1974)), the structure of the optimal estimator 6y for the mixed model has proved to be
something like a quasi-convex combination between the prior mean Cb and the Aitken
estimator CE. For regular T, i.e. P = I, the Moore-Penrose inverses turn over to
regular inverses and 6y becomes the well-known linear Bayes estimator. For the case that
additional information is not available (i.e. T+ = 0), we obtain from (15) the usual BLUE
89 = CP. : O



Remark 4. If the x determines for the joint distribution of (8,¢€) just a normal dis-
tribution with corresponding parameters ¥ and S, then éy is even BUE. This property
_ follows, as usual, from the fact that using a quadratic loss, the BUE is just the conditional
~expectation Ef2(v|Y), which is for the normal distribution a linear function in Y. 0

Remark 5. Analogous to Rao (1965) we now consider the case that also b is assumed to
be unknown. Then the corresponding unbiasedness condition for linear estimators takes

the form
Efr(y—a—LY)=0 forallBrel, be L,

| ﬁrhat means that a = 0 and C = LX. Therefore we obtain
R(CT) CR(XT) (16)

as a necessary and sufficient condition for linear estimability for the parameter 4. We now
,..show that under these conditions the estimator 4 = Cﬁ is BILUE for ~ and

R (n,3)=tr HCQYCT forall B € L, be L . (17)
Because of (16) it holds
| y=5=CQtXTQ e =: L, (18)
and therefore, Ef2(y—5) =0 for all 8, € £, b € L*. Let L be an arbitrary (r x n) matrix
with C = LX, then we have
EP|ly - LY | = EZ|ly - LY |} + B2 (2 - L)Y |I%

because the mixed terms are vanishing

tr HL(E®?¢e ") (L — L) + tr H(L — L)(E®?ee )L™
=tr HCQY(LX - LX) + tr H(LX - LX)Q*CT
=0,

taking into consideration the estimability condtion IX=LX =C.

The risk (17) follows from (18).
_ Therefore, if we only know the covariance structure of §; without knowledge of the
location, this information does not result in an improvement of the generalized least squares

estimator. O



5. THE RESTRICTED MINIMAX OPTIMALITY

Indeed, the restriction to the class of linear estimators or to the normal distribution are
strong mathematical limitations. Although this assumptions in many practical situations
are not so far from the reality (often the parameter « is assumed to be in a “neighbourhood”
of the normal distribution) one should be glad if some robustness properties of the used
estimator could be proved concering to a possible violation of the normality assumption.

For that we consider the

Definition 6. Let II* C II, D* C D certain given subsets of II and D respectively. An
estimator 6* € D* is called to be restricted strong minimax w.r.t. II* within the class D*,
if

infsepe suprene RP2(7,6) = suppene RP2(n,6%) forall B, €L (19)

(cf. Bunke (1964), Cogburn (1967), Wind (1973)). 0

For our optimal estimator 3 we prove the following robustness property (analogous

to Wind (1973)):

Theorem 2. Let Y € O be given. Then the estimator 6y is restricted strong minimax
w.r.t. Iy within D¢, where 7 = (Y, kg) and kg denotes the normal distribution.

Proof. Because of Theorem 1, the risk R??(r,6y) is constant for all 7 € IIy and 3, € L.
Further there exists an element ng € Ily, for which éy is BUE; i.e. 6y is the best estimator

within the set D]S. Assuming there would exist an element 6* € D¢ with 6* # 6y and
sup ey, RP*(7,6*) < R(9,65) for one B; € L,
then, because of 7g € Ily, it also holds
RP2(ng,6%) < R(9,6s),
what is in contradiction to
R(9,84) = R%*(ng,65) < RP*(ng,6) forall 6 € DTe, B, € L. O

With Theorem 2 we have shown that éy minimizes—with respect to IIy—the least
favourable risk within the set of unbiased estimators DJ¢, in fact uniformly in 32 € L.
If we use a weaker optimality concept than (19), a minimax property for éy can be

proved even in the class of all estimators D.
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Definition 7. Let II* C II, D* C D. An estimator 6* € D* is called to be restricted

weak minimax w.r.t. II* within D*, if
infsep+ supg,ec SUPreme RP2(7,6) = SUPg,ec SUPrelT® RP2(x 6%). O

From the strong minimax optimality, it follows obviously the weak optimality. For

the proof of the next theorem we need the following

Definition 8. Let a > 0 be a given constant, £ a certain prior distribution on £ and
7 € II. An estimator 6, € D is called to be a-Bayes w.r.t. £, if

/ RP2(m,6,)E(dB,) < / RA2(m,6)¢(dBy) + a for all 6 € D. 0
c L

Theorem 3. For any given ¥ € O the estimator 6y is restricted weak minimax w.r.t. Il
in the set D (of all! estimators).

Proof. First of all, we show for §y the weak minimax optimality for the normal distri-
bution 7g. We then obtain the assertion of the theorem from the property of the normal
distribution to be in a certain sense a least favourable distribution within II,.

The risk RP?(ng,69) is constant for all B, € L. Using A 3.43 in Bunke and Bunke
(1986), it suffices to show that for any o > 0, there exists a prior distribution £, on L,
such that 8y is a-Bayes. Further, we denote by “mixed risk” the expression

Foe €0y 6) = /C RP*(ng, 6)ta(dBy), 6 € D. (20)

Now we choose by

€a = Ne(0, 77 (a)Py)

a normal prior distribution for 8; such that 8, and (f,¢) are stochastically independent,
and 7 > 0 be a constant yet to be chosen depending on a, T, and Q. Here, P, has to be
chosen positive semidefinite, e.g. (Ix — TTT) = P,. Then we have for 8 a regular normal

distribution

B~ Ni(b, T+ 771R,),

and B und ¢ are uncorrelated. Therefore, an optimal estimator 65," w.r.t. (20) exists for 4
in D with
8 =Cl[(T+7'P) ' + Q] ' [(T+77'P) b+ QB).

Because of R(T)LR(P;) = L and b € R(T) we have
(T 4 T—IPQ)—I =Tt + 7P;.
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Therefore, 63" takes the form
8§ =C(IT* + 7P + Q) (T b+ QB)
with the mixed risk
rag(§a,65°) = tt HO(T* + 7P + Q)7'CT,

and it holds
Trg (fa, 550') < Trg (fG, 59) = R('l9, 5,9).

With the denotation A := T+ + @, let a;, ¢ = 1,...,k, be the characteristic roots
of A. Then the projector P, can be splitted orthogonally into a part P;* projecting onto
the range R(P;A) = R(P,XT) and the remaining P, — P§'.

Therefore, we obtain for the Bayesian risk

rre(bay65°) = tr HC(A+ 7P + 7(P, — Pf)) 7' CT
— tr HO(A + rPAY CT + }tr HC(P, — PA)CT
=tr HC(A+ Pf)*CT,

because from the estimability condition' R(P,C7) C R(P,X ") it follows P,CT = PACT,
Now, the following relations hold

Pag (€as89) — Trg (€, 652) = tr CTHC[A* — (A — 7P)*]
< AmaxCTHC tr(AY — (4 + TPH)Y)

1 1
T —_—
< Amaxc' HC [Zi:ai>0 a; :a;>0 a; + T]
= AmaxCTHC Y

,
< kApaxCTHC

i:0;>0 g;(a; + T)
T
T AST A+ 1)’

min min

where \>Y denotes the smallest latent root greater than zero.

Let now
r

A0 AN A+ 1)

min

a:= kdpaxC THC

then we obtain for a given a > 0 the constant 7 by

(AHUIIA)2
kAmaxCTHC — aX0 A’

min

(21)

m(a)=a
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There exists a positive number ag, such that for all @ < g the term (21) becomes nonne-

gative. Therefore, for any 0 < a < ap it holds

Pre (Eas89) < Trg(€ay 85°) + .

Using the property of 65“ to be a Bayesian estimator, we obtain
Trs(Eas69) < Trg(€a,8) +a forall § € D.

For a > ag, the 7(ao) does it obviously. Therefore, we have shown: For any a > 0, there
exists a prior distribution £, on £ such that 65 has the property to be a-Bayes. Thus,
using A 3.43 in Bunke and Bunke (1986), it follows that 6y is minimax in D for =g, i.e.

infsep supg, e RP*(ng,6) = SUPg,cc RP2(ng, b9).

From the property of RP?(7,65) = R(9, 63) to be constant for all 8, € £ and 7 € Iy, we

obtain .
supg,cc R7 (g, 6) = SUPg,ec SUPremn, B (7, 69)

> infsep SUPg,ec SUP e, Rﬂz(n, 6).

Since g € Iy, we have on the other hand
infsep SUPg,ec Rﬂz(wG, 8) <infsep SUPg, e £ SUPrerl, Rﬂ’(w, 6),
what therefore means that

infsep supg, e ¢ Supren, RP*(m,6) = R(Y, ). 0

REFERENCES

Bunke, O. (1964). Bedingte Strategien in der Spieltheorie: Existenzsitze und Anwendung
auf statistische Entscheidungsproblem. Transact. 3rd Prague Conf. Inf. Th., Statist.
Decision Functions, Random Processes.

Bunke, O. (1977). Mixed models, empirical Bayes and Stein estimators. Math. Operati-
onsforsch. Statist., Ser. Statistics 1, 55-68.

Bunke, H. and Bunke, O. (1986). Statistical Inference in Linear Models. Vol. 1. Wiley, New
York.

13



Bunke, H. and Gladitz, J. (1974). Empirical linear Bayes decision rules for a sequence of
linear models with different regressor matrices. Math. Operationsforsch. Statist. 5,
235-244. _

Cogburn, R. (1967). Stringent solutions to statistical decision problems. Ann. Math. Sta-
tist. 38, 447-463.

Gaffke, N. and Heiligers, B. (1987) Bayes-, admissible and linear estimators in linear models
with restricted parameter space. Preprint Nr. 42, Universitdat Augsburg, Institut fur
Mathematik.

Hartigan, J. (1969). Linear Bayes methods. J. Roy. Statist. Soc. B 31, 442-454.

Harville, D.A. (1978). Alternative formulations and procedures for the two-way mixed
model. Biometrics 34, 441-454.

Harville, D.A. (1979). Some useful representations for constrained mixed model estimation.
J. Amer. Statist. Assoc. T4, 200-206.

Henderson, C.R. (1963). Selection index and exptected genetic advance. In: Statistical
Genetics and Plant Breeding (W.D. Hanson and H.S. Robinson, eds.). National
Academy of Sciences, National Research Council, Washington. Publ. 982, 141-163.

Lindley, D.V. and Smith, A.F.M. (1972). Bayes estimation for the linear model. J. Roy.
Statist. Soc. B 34, 1-18.

Pilz, J. (1983). Bayesian Estimation and Experimental Design in Linear Regression Models.
Teubner-Texte zur Mathematik, Vol. 55, Teubner, Leipzig.

Rao, C.R. (1965). The theory of least squares when the parameters are stochastic and its
application to the analysis of growth curves. Biometrika 52, 447-458.

Wind, S. (1973). An empirical Bayes approach to multiple linear regression. Ann. Statist.
1, 93-103.

Dr. Johannes Gladitz

Institut fur Soziologie und Sozialpolitik
AdW der DDR

Otto—Nuschke-Str. 10/11

Berlin

DDR-1086

14



